Problem. Let c > 0 be a given positive real and $\mathbb{R}_{>0}$ be the set of all positive reals. Find all functions $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ such that

$$f((c+1)x + f(y)) = f(x+2y) + 2cx \quad \text{for all } x, y \in \mathbb{R}_{>0}.$$

After trying to solve the problem on your own, you can find a possible solution on the next page.

This problem is related to functional equations. Check out the skillpage a to help you solve the problem.

^ahttps://calimath.org/skillpages/functional-equations

Problem. Let c > 0 be a given positive real and $\mathbb{R}_{>0}$ be the set of all positive reals. Find all functions $f : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ such that

$$f((c+1)x + f(y)) = f(x+2y) + 2cx$$
 for all $x, y \in \mathbb{R}_{>0}$.

Proof. We can see that f(x) = 2x satisfies the given condition. Now, we want to prove that this is the only solution. Let P(x, y) denote the assertion that

$$f((c+1)x + f(y)) = f(x+2y) + 2cx.$$

Assume we find some z with f(z) < 2z. $P(\frac{2z-f(z)}{c}, z)$ gives

$$f(2z + \frac{2z - f(z)}{c}) = f(2z + \frac{2z - f(z)}{c}) + 2cz.$$

From 2cz > 0, we get a contradiction. Thus,

$$f(x) \ge 2x \quad \forall x \in \mathbb{R}_{>0} \tag{1}$$

Now, assume that f(z) > 2z for some positive real z. Thus, we find a positive real number d satisfying f(z) = 2z + d. We want to prove by induction that $f(x) \ge 2x + k \cdot d$ for every integer $k \ge 0$ and every real number x > 2z. The base case follows from eq. (1). For the induction step, assume $f(x) \ge 2x + kd$ for every x > 2z. P(a, z) yields

$$f(a + 2z) = f((c + 1)a + f(z)) - 2ca$$

= $f((c + 1)a + 2z + d) - 2ca$
 $\ge 2((c + 1)a + 2z + d) + kd - 2ca$
= $2a + 4z + (k + 2)d$
 $> 2(a + 2z) + (k + 1)d$

Since a can be an arbitrary positive integer, our claim follows. Now take $k > \frac{f(2z+1)}{d}$. We get

$$f(2z+1) \ge 4z + 2 + k \cdot d > k \cdot d > \frac{f(2z+1)}{d} \cdot d = f(2z+1).$$

This is a contradiction. Thus, f(x) = 2x for every $x \in \mathbb{R}_+$ follows.

q.e.d.