**Problem.** In triangle ABC, AB = BC, and let I be the incentre of  $\triangle ABC$ . M is the midpoint of segment BI. P lies on segment AC, such that AP = 3PC. H lies on line PI, such that  $MH \perp PH$ . Q is the midpoint of the arc AB of the circumcircle of  $\triangle ABC$ . Prove that  $BH \perp QH$ .

After trying to solve the problem on your own, you can find a possible solution on the next page.

**Problem.** In triangle ABC, AB = BC, and let I be the incentre of  $\triangle ABC$ . M is the midpoint of segment BI. P lies on segment AC, such that AP = 3PC. H lies on line PI, such that  $MH \perp PH$ . Q is the midpoint of the arc AB of the circumcircle of  $\triangle ABC$ . Prove that  $BH \perp QH$ .



*Proof.* We use directed angles mod  $180^{\circ}$ .<sup>1</sup> Let R be the second intersection of PI with the circumcircle of BMH beside H and let S be the intersection of BR with CI. Moreover, let N be the midpoint of AC. This means  $AC \perp BN$  since ABC is isosceles.

Since

$$\triangleleft NBR = \triangleleft MBR = \triangleleft RHM = \triangleleft MHP = 90^{\circ},$$

we get that lines AC and BR are parallel. Moreover, BR is the exterior angel bisector of  $\triangleleft CBA$ and since CI is the interior angle bisector of  $\triangleleft ACB$ , we get that S is the C-excenter of triangle ABC. Thus by the incenter/excenter lemma<sup>2</sup> we get

$$QA = QB = QI = QS. \tag{1}$$

Since AP = 3PC we know that P is the midpoint of AN. Now since AC and BS are parallel R is the midpoint of BS. We also know that m is the midpoint of BI by definition. Because of 1 we get that QM is perpendicular to BI and QR is perpendicular to BS. Therefore the points MBRQ lie on the circle with diameter BQ. Now since HMBR is concyclic, H must also lie on the circle with diameter BQ. Thus  $\triangleleft QHB = 90^{\circ}$ , which gives the desired result.

q.e.d.

<sup>&</sup>lt;sup>1</sup>https://calimath.org/wiki/directed-angles

<sup>&</sup>lt;sup>2</sup>https://calimath.org/wiki/incenter-excenter-lemma