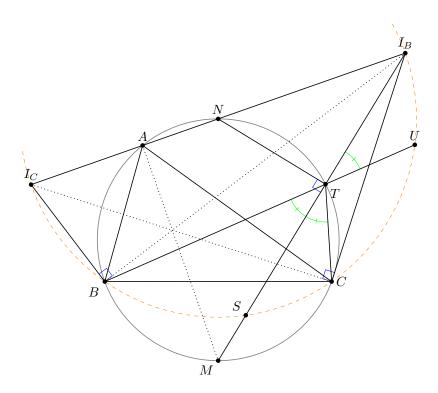
Problem. I_B is the *B*-excenter of the triangle ABC and ω is the circumcircle of this triangle. M is the middle of arc BC of ω which doesn't contain A. MI_B meets ω at $T \neq M$. Prove that

$$TB \cdot TC = TI_B^2.$$

After trying to solve the problem on your own, you can find a possible solution on the next page.

Problem. I_B is the *B*-excenter of the triangle ABC and ω is the circumcircle of this triangle. M is the middle of arc BC of ω which doesn't contain A. MI_B meets ω at $T \neq M$. Prove that

$$TB \cdot TC = TI_B^2$$
.



Proof. Let I_C be the excenter opposite to vertex C. We know that BI_B is the angle bisector of $\triangleleft CBA$ and BI_C is the exterior angle bisector of $\triangleleft CBA$. Thus, $\triangleleft I_BBI_C$ is a right angle. In the same way, we get $\triangleleft I_BCI_C = 90^\circ$. This implies that the Points C, B, I_C and I_B lie on a circle Ω with center on I_BI_C . Since I_BI_C is the exterior angle bisector of $\triangleleft BAC$, we know that it passes through the midpoint N of arc BC, which contains A. N lies on the perpendicular bisector of BC. Thus, the N is the midpoint of Ω .

Let S and U be the second intersections of I_BT and BT with Ω . Since N and M lie on opposite sides on ω , we know

$$\triangleleft NTM = 90^{\circ}.$$

This implies that T is the midpoint of I_BS since N is the center of Ω . Moreover,

$$\triangleleft UTI_B = \triangleleft BTM = \triangleleft MTC = \triangleleft STC.$$

Here, the second equality follows from the fact that M is the midpoint of arc BC, and thus, MT is the angle bisector of $\triangleleft BTC$. We get $\triangleleft NTC = \triangleleft UTN$, and since U and C lie on a circle with center N, they are symmetric with respect to the perpendicular bisector NT of SI_B . Thus, TU = TC. Putting everything together, we conclude

$$TB \cdot TC = TB \cdot TU = TS \cdot TI_B = TI_B^2$$
.

q.e.d.