Problem. Let ABC be a scalene triangle with orthocenter H and circumcenter O. Denote by M, N the midpoints of \overline{AH} , \overline{BC} . Suppose the circle γ with diameter \overline{AH} meets the circumcircle of ABC at $G \neq A$, and meets line AN at a point $Q \neq A$. The tangent to γ at G meets line OM at P. Show that the circumcircles of $\triangle GNQ$ and $\triangle MBC$ intersect at a point T on \overline{PN} .

After trying to solve the problem on your own, you can find a possible solution on the next page.

Problem. Let ABC be a scalene triangle with orthocenter H and circumcenter O. Denote by M, N the midpoints of \overline{AH} , \overline{BC} . Suppose the circle γ with diameter \overline{AH} meets the circumcircle of ABC at $G \neq A$, and meets line AN at a point $Q \neq A$. The tangent to γ at G meets line OM at P. Show that the circumcircles of $\triangle GNQ$ and $\triangle MBC$ intersect at a point T on \overline{PN} .

Proof. We use oriented angles modulo 180° . Denote the circumcircle of ABC by Ω and the intersection of AG with BC by S.

Claim 1. S, H, and Q are collinear.

Proof. Denote the reflection of A over N by A'. We get $A'C \parallel AB \perp CH$ and $A'B \parallel AC \perp BH$. Hence, $\triangleleft HCA' = A'BH = 90^{\circ}$. Moreover, $\triangleleft HQA' = \triangleleft HQA = 90^{\circ}$. Thus, B, Q, and C all lie on the circle with diameter A'H. Hence, BCQH is concyclic. By the radical axis¹ on this circle, Ω , and γ , we get that QH passes through S.

Claim 2. G, H, and N are collinear.

Proof. Define H' as the reflection of H over N. We get $\triangleleft CH'B = \triangleleft BHC = 180^{\circ} - \triangleleft BAC = \triangleleft CAB$. Thus, H' lies on Ω . Moreover, $\triangleleft H'AC = \triangleleft H'BC = \triangleleft HCB = 90^{\circ} - \triangleleft CBA = \triangleleft OAC$. Hence, H' lies on AO, which implies that AH' is a diameter of Ω . Therefore, we get $\triangleleft H'GA = 90^{\circ} = \triangleleft HGA$. Thus, H', N, H, and G are collinear.

The claims imply $\triangleleft SGN = 90^{\circ} = \triangleleft SQN$. Hence, SGNQ is cyclic and it's circumcircle is one of the circles considered in the problem statement. Since M is the midpoint of AH and Ois the midpoint of AH', we get that $MO \parallel HH'$. Hence, $\triangleleft AMP = \triangleleft AHG = \triangleleft AGP$. Thus, AMPG is cyclic. Define $T \neq G$ as the second intersection of its circumcircle with the circumcircle

¹https://calimath.org/wiki/radical-axis

of SGNQ. We get

$$\triangleleft NTG = \triangleleft NSG = 90^{\circ} - \triangleleft SAH = \triangleleft AHG \overset{M \text{midpoint of } \gamma}{=} \triangleleft HGM \overset{GH \parallel PM}{=} \triangleleft PMG = \triangleleft PTG.$$

This implies P, T, and N are collinear. Since M is the midpoint of γ and P lies on the tangent of γ at G, we know $90^{\circ} = \triangleleft MGP = \triangleleft MTP$. On the other hand, $\triangleleft STN = \triangleleft SQN = 90^{\circ}$ which implies that S, T, and M are collinear. Using power of a point² on S, we get

$$SB \cdot SC = SG \cdot SA = ST \cdot SM,$$

where we used signed products. Thus, BCMT is concyclic. Hence, T lies on both of the circumcircles of GNQ and MBC and also on the line PN. q.e.d.

 $^{^{2} \}rm https://calimath.org/wiki/power-of-a-point-theorem$